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We consider a model explicit fourth-order staggered finite-difference method for
the hyperbolic Maxwell’'s equations. Appropriate fourth-order accurate extrapolation
and one-sided difference operators are derived in order to complete the scheme near
metal boundaries and dielectric interfaces. An eigenvalue analysis of the overall
scheme provides a necessary, but not sufficient, stability condition and indicates long-
time stability. Numerical results verify both the stability analysis, and the scheme’s
fourth-order convergence rate over complex domains thatinclude dielectric interfaces
and perfectly conducting surfaces. For a fixed error level, we find the fourth-order
scheme is computationally cheaper in comparison to the Yee scheme by more than
an order of magnitude. Some open problems encountered in the application of such
high-order schemes are also discussed.2001 Academic Press
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1. INTRODUCTION

Many modern technology applications involve the propagation and scattering of transi
electromagnetic signals, e.g., electronic on-chip interconnects, nondestructive testin
concrete structures, and aircraft radar signature analysis. The design and optimizatic
new systems demands fast and accurate solvers of the time-domain Maxwell equat
over complex closed/open domains filled with heterogeneous dielectrics in which met
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are embedded. This is a challenge for numerical modelers as the relevant mathems
problem to be solved generally exhibits disparate spatial (e.g., inhomogeneities with &
small- and large-scale features) and time (e.g., dispersive media) scales. A mini-revie\
the computational electromagnetics (CEM) state of the art can be found in [1].

Thus far, Yee’s [2-3] finite-difference time-domain (FD-TD) algorithm has provided tt
best [4] second-order accurate nondissipative direct solution of the time-domain Maxv
equations on a staggered grid. The numerical error is controlled solely by the mesh size,
the scheme is particularly easy toimplementin the presence of heterogeneous dielectric
perfectly conducting (PEC) boundaries; itis second-order convergent for planar geomet
where boundaries/interfaces occur on grid points. As all finite difference schemes, the
scheme is dispersive and anisotropic, and for large-scale problems, or for problems requ
long-time integration of Maxwell’s equations, errors from dispersion and anisotropy quick
accumulate and become significant unless a fine discretization is used [6]. This leac
prohibitive memory requirements and high computational cost when addressing real-w
problems.

For some time now, workers in CEM have realized the promise of high-order finit
difference schemes [5-12]. The question of staggered versus unstaggered high-c
schemes has been studied in [13] which showed that, for a given order of accurac
staggered scheme is more accurate and efficient than an unstaggered scheme. Howev
extended spatial stencil of staggered high-order methods has inhibited their wide ac
tance as it does not allow the easy application of boundary conditions (far-field, impedat
or metal) and the accurate modeling of dielectric interfaces. In this paper we revisit
explicit(2, 4) scheme of [5], and we use it as a model to address some of the remaining
jections to using high-order stencils on a staggered grid. Although it is possible to consi
a fourth-order time integrator with Fang’s spatial differencing, e.g. [18], we concentre
on the particular (2, 4) scheme herein in order to introduce and study appropriate sp
differencing techniques for bounded domains.

We adopt a domain-decomposition point of view and treat dielectric interfaces as bou
ary points between subdomains in which the spatial derivatives are computed to fourth-o
accuracy; boundary data is imposed as in the Yee scheme. For the model fourth-order
tial stencil, we propose a series of numerical boundary conditions, involving one-sic
differentiation and extrapolation/interpolation, to implement metal boundaries and diel
tric interfaces when these occur on electric field grid points. Where appropriate, we indic
how to modify our scheme for the cases where the boundaries, or the dielectric interfa
occur on magnetic field grid points. Our approach is motivated by [15, 16], which co
sidered the accurate treatment of dielectric interfaces for the second-order Yee scher
similar approach for second-order schemes is developed in [17]). The treatment of m
boundaries herein is different from that used in [6], where the method of images was
plicable because of the infinite extent of those boundaries in the numerical tests perfor
there. Also, the treatment of dielectric interfaces herein is different from that in [7], whe
a simple pointwise specification of dielectric properties was used; we show that suct
approach severely degrades the convergence rate of the scheme. A stability analysis, v
includes the effects of metal boundaries and dielectric interfaces, is given. We find the r
essary CFL stability condition derived in [5] also holds when metal boundaries are pres
while problems with dielectric interfaces require a slightly smaller CFL number which w
determine for a given mesh size and dielectric contrast. For the model scheme herein tt
not overly restrictive as one typically chooses a CFL number proportional to the mesh ¢
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in order to compute fourth-order accurate results. Numerical experiments show that tr
new numerical boundary conditions preserve the fourth-order accuracy of the scheme w
boundaries/interfaces occur on grid points. We also examine the effect of stair-steppir
boundary not aligned with the grid, and of the presence of geometric singularities.

2. PRELIMINARIES

The Maxwell equations in an isotropic, homogeneous, nondispersive medium are

B

5 +VxE=0 (Faraday’'s Law)

oD

e VxH=0 (Ampere’s Law) )
B =uH,
D =¢€E.

Inthe absence of impressed electric charge, the magnetic induction and electric displace
fields satisfy the constraints (Gauss’s law):

B=0,
)
D=0.

Scattering obstacles will be modeled by a spatial variationarfdu. In free spaces and
wu are constant, equal to their minimum valugso. The speed of light in free space is
c= \/eim

To simplify the notation we will mainly consider two-dimensional problems. In twc
dimensions, (1) decouples into two independent sets of equations, each representi
distinct polarization. We shall use as our model system of equations those of the transv
magnetic (TM) polarization, where the electric field is a scalar while the magnetic field

a plane vector,

9E, 1(aHy 8HX)

at e\ ax ay

e 205 ©
ot w oy

oHy, 10E,

at u 9X

Because the fields have izedependence, Gauss’ Law is trivially satisfied Dy= (0, O,
€E,)T, while the magnetic fields are constrained to satigfy(u Hy, wHy, 0" = 0forall
time. Wave excitation is achieved by imposing appropriate initial and/or boundary cc
ditions. We will present numerical examples for dielectrics with (a) piecewise-conste
€ (u = wo), and (b) piecewise-constant(e = ¢p). Case (b) can be thought (duality) to rep-
resentthe transverse electric (TE) polarization problem for a dielectric of piecewise-cons
€ and fixedu = uo. The extension of the work herein to the more general three-dimensior
problem (1) is straightforward.



FOURTH-ORDER FINITE-DIFFERENCE METHOD 289

3. THE SCHEME IN A HOMOGENEOUS BOUNDED DIELECTRIC

The discretization of (3) with the staggered Yee sche®e\t?)-accurate leapfrog time
integration) is

At At
n+1 _ gEn n+1/2 n+1/2
EZIJ_EZIJ EAX(S Hyl] Ay(SyHXII ’
At
n+1/2 n-1/2
Hx.i,jfl/2 = Hx,i.j71/2 - TAySYEQ,i,j—l/Zv (4)
n+1/2 n-1/2
Hy,i—1/2,j = Hy,i—l/Zj WA ‘Sx ZI 1/2,j°

where

Ui,j = Uit12j — U1z, 5)
SyUij = Ui 112 — Ui jrap.

Hereafter we shall refer to (4) and (5) as the Yee scheme.
In the fourth-order scheme [5] the spatial difference operators (5) are replaced by fou
order accurate stencils. For example, to compute a fourth-order accurate approximatic

the quantityAy 2 5y ld.j+1/2) We use

1
SyUij = 2*4(Ui,171—27Ui,j + 27U j11 — Ui j42). (6)

The Yee scheme can be applied at all nodes in a bounded domain except at the
and last where boundary conditions are to be imposed. However, the fourth-order ste
requires numerical boundary conditions at the nodes next to an electric field boundary n
To complete this scheme at the two interior grid points (one electric and one magne
immediately next to the first and last electric field grid points of a bounded domain, we
fourth- and third-order accurate one-sided approximations in order to globally approxim
the derivative. No physical boundary conditions are included at this stage. These one-s
approximations are

au 1
Byivs ~ 2any 2ot 1+ Uiz~ SUis+ Ui,

51V) 1

Y1 24Ay( i1/2 + i,32+3Ui 52 i.7/2) 7
oV 1 )

ina 24Ay (23Ui,n-1/2 — 21Uj n—3/2 — 3Uj N—5/2 + Ui n-7/2),

ou 1
Oin-1z 24Ay(22Ui’N — 1MiNn-1—OUin-2+ SUiNn-3 — Uin-a),

for the derivative in thg-direction with truncation error 19% 3;7% and A2¥1 %YE{ , and simi-
larly for the derivative in th&-direction. Consequently, electric field boundary condition:s
can be imposed as in the Yee scheme. Labeling the scheme, which employs (6) in
interior and (7) near the boundary, a43 — 4 — 3 — 4 scheme (see [14] for similar nota-

tion), we have also tested alternative boundary treatments that resut 44 — 4 — 4,
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3—4—-4—-4-3, or 3—3—4—3-—3 schemes; such schemes were rejected throuc
numerical experimentation as less accurate.

We next define

23 21 3 -1 . ) 0]
1 -27 27 -1 . ) 0
0 1 —-27 27 -1 . 0
Ay . (8)
0 1 -27 27 -1
0 1 -3 -21 23
and
(22 17 9 -5 1 0]
1 -27 27 -1 . . 0
0 1 27 27 -1 . 0
Ag = , 9)
0 . 1 —27 27 -1
|0 . -1 5 -9 -17 22|

so the matrix form of the approximation to tiyederivative at the midpoint between grid
points, and at the grid points, is respectively

Uiz | Uio
P Ui’g/z 1 Ui,l
— . =—A . ,
ay 24Ay" F Ui
) i N_
Ui N-1/2] Ui
U1 | Ui 12
5 Ui 1 Uiz
-~ . - 7A . )
ay 24Ay H
. Ui n-3/2
Ui N-1] Uin-1/2

and similarly for the derivative in th&-direction. With these definitions, the matrix form
of the discrete TM equations (3) is

At n+1/2 At n+1/2
(B2 = [EZ 0"+ 5o An Yz )77 22 [ ] ™A
n+1/2 n—1/2 At
[HXijs2] " = [HXi 2] —M[EZL;]"AE (10)
_ At
HY. n+1/2 — [HY. n-1/2
[ |+1/2,j] [ I+l/2,]] + 24 AX
Hereafter we shall refer to (10) as the explicit(2,4) scheme.
We now demonstrate that (10) is divergence-free for TM waves, i.e., that

Ae[EZ ]"

a
5V (h pHy)T =0, (11)
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From the second and third equations in (10) it is easy to see that the following holds

1 1 . n+1/2
(MAE [(LHX)ij+1/2] + 247y [(HHY)i+1/2,j]AE)
1 1 n-1/2
- (mAE [(MH x)i,j-s—l/z} + TAy [(,U«HY)i-s-l/z,j ]AtE) =0 (12)

This is the discrete form of (11) at spatial locatiGr+- 1/2, j + 1/2) (the center of the
rectangular cell with corners at the nearest-neighbor electric nodes) and time teviie
grid since

1 d(uHX) 4
=—Ae|(LHX)i jr12] = [7} + O(AXY)
24AX [ 2 X lit12j+1/2

d(uHY)
(WHY)it1/2, ] AR = [] + 0(AyY.
24Ay[ 72 ay i+1/2,j+1/2

Hence, if the field is numerically divergence-free initially, i.e., the initial data satisfies (Z
it will remain so ever after. We have determined that (12) holds in numerical simulations
within O(10713). If the permeabilityu is discontinuous, the derivation of the divergence-
free property differs. In that case we segment the domain into subdomains, and then
holds in each region.

If the perfect conductor is located on a tangential magnetic field node, then a differ
treatment is required as now a homogeneous Neumann conoﬁ’ﬁﬁ?@ 0, holds on
such a node. We shall explain the necessary modifications using the one-dimensional
involving HY and EZ; the extension to two and three dimensions follows along simil;
lines. On the perfect conductoarﬁ:wll/z2 = 0 is the boundary condition to be imposed.
Now, the electric field node at= 1is V|ewed as a boundary node for which we must obtail
an update that takes into account the boundary conditioe-at/2. To that effect we obtain
the requiredLYnH/2 by a fourth-order interpolation of the fluxes at neighboring electri

X i=1
field nodes and at the boundary node

8HYn+1/2 168Hyn+1/2 aHyrH—l/Z SaHYrH—l/Z laHY”“/Z

X izt 35 9X i= 1/2+ X i=2 5 0X i=3 +7 oX i=4
Using the physical boundary conditioniat 1/2 (where the flux is known) this reduces to

8HYn+l/2_ 3HYn+1/2 38HYn+l/2+ 18HYH+1/2 (13)
X i1 X i=2 5 X i=3 7 OX i=a

We approximaté’d—)fl +3/4 by using (6), anc%—XI +21/ by using the second formula in (7),

so the desired update &Z, is effected with

At gHY M2
EZM =EZ] . 14
! 1t € 09X i=1 (14)
In Section 3.1 we show the necessary stability condition also holds for this case,
provide a two-dimensional numerical test employing this procedure in Section 5.1.
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3.1. Stability

A standard Von Neumann analysis of (4) and (5) on an unbounded uniform Cartes
grid with mesh sizén results in the well-known CFL stability condition

At h
Jminte ) - Jd'

whered is the number of spatial dimensions [3]. The application of boundary conditions
electric field grid points does not alter the stability condition. When dielectrics are prese
one first determines the maximumfor accuracy by using the mdx - 1} over the domain
of interest and the maximum frequency to be resolved with a preset number of poi
per wavelength; the stability condition then sets the maximum allowed time step for tl
particularh.

A similar analysis for (4) and (6) on an unbounded uniform Cartesian grid with me:
sizeh results in the CFL condition

At h
—— < 2—
vmin{e - u} P>

where p* is the spectral radius of the matrices used to compute spatial derivatives;
7

the differentiation matrix scaled Hy, it is p>° = é\/a. In this paper we consider (10) for
d = 1, 2, 3, and the following eigenvalue analysis verifies that the same necessary condi
holds for stability over bounded domains; we do not prove herein that this condition is a
sufficient for stability.

First, we analyze the stability of tle= 1 semi-discrete versions of (1At — O for a
fixed h £ 0) on a bounded domain in order to determine whether the inclusion of the or
sided differencing operators and the imposition of boundary conditions result in a sta
scheme. We will do so by neglecting thid K] grid function, settindh = Ax,e = u =1,

and considering the system

[51.

du 1

FTi HM - u. (15)
The vectoru = {EZy, EZy, ..., EZN_1, EZy, HYl/z, HY3/2, ey HYN,3/2, HYN,]_/Q}
is the solution on the grid, andl is the matrix composed of the difference operators
represented by (8) and (9). We will consider the case in wlcanforces homogeneous
Dirichlet boundary condition& Zo = E Zy = 0 at the first and last (boundary) nodes of
the grid. Assumingi = €{i, wherex are the eigenvalues &, andd is a complex-valued
constant vector, the spectral radiushdf providedi{1} = 0, will be p™ = max|3{1r}|,
and the semi-discrete scheme will be stable. The fully discrete scheme, using stagg
Leapfrog time integration and including the case # 1, will be stable when

At h
<2
Jmin{e - i} — pM

We now show (16) is valid for a computational domain that is filled with a homogeneo
dielectric and is truncated with homogeneous Dirichlet boundary conditions on the elec
field. Figure 1 shows the spectral radiuswfas a function of the mesh size; the MATLAB
functioneig, with long format, was used to compyt&'. We found thati{1} = O(10715)

(16)
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p”"=7/3
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Max ()3
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h

FIG. 1. The spectral radiugy as a function of mesh size for Dirichlet boundary conditions.

forallh. Ash — 0, pM — p> from below, i.e., the explicit(2, 4) on a bounded domain is
stable for the same CFL number as in an unbounded domain.

Condition (16) has also been verified fibe= 2 by proceeding as in the one-dimensional
case withu appropriately defined in terms &Z, H X, HY values on a two-dimensional
grid. Figure 2 shows information similar to that in Fig. 1 (we have not been able to consi

3.34 T T T T T T

3.32- N

oo

33 p7= 7N2/3

3.22- 1

3.2 1 1 1 I 1 )
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

h

FIG. 2. Same as Fig. 1, fai = 2.
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2.34 T T T T T T

> p"=7/8

2.321 T

Max(|3(A))

23r b

229 N

228 _
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

h

FIG. 3. Same as Fig. 1, for the PEC imposed on a tangential Magnetic field node.

smallerh values because of computer memory restrictions), and indicates that in two
mensionso™ — 7+/2/3 from below, i.e., the explicit(2, 4) on a bounded two-dimensiona
domain is stable for the same CFL number as in an unbounded domain. It was found
NR{r} = O(10~) for all h considered. In three dimensions, we have verified numericall
(see last example in Section 5.1) th&#t — 7./3/3.

When the PEC boundary occurs on a tangential magnetic field node, the above ana
indicates that the necessary stability condition (16) is still valid. Figure 3 shows the spec
radius of the resultingyl as a function of the mesh size. In this case we foundtt{at =
O(1075) for h corresponding to 46- 1280 points per wavelength, except for= 1/10
andh = 1/20, wheréfi{r} = O(10°8) andi{r} = O(10°°), respectively.

4. THE SCHEME IN AN INHOMOGENEOUS BOUNDED DIELECTRIC

Consider a two-dimensional computational domain over which the dielectric permittivi
is a piecewise constant function of the horizontal coordinate only, with the points of discc
tinuity of the material property occurring on electric field grid points. Then, we are face
with the problem of deriving finite difference expressions to correctly update the elect
field on those grid points. For the sake of expositionglet ¢; to the left of the interface,
ande = ¢; to the right, withu = o everywhere. Across such a dielectric interface, the
tangential components of the electromagnetic figld,andH Y in this case, are continuous.
Further, the first-order derivative & Z is continuous, while that ofl Y is discontinuous,
and second- and higher-order derivatives of both fields are discontinuous.
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To implement the Yee scheme on a dielectric interface we;§gtace = % This can
be shown to be the appropriate material property for the grid point of discontinuity,
a local truncation error analysis indicates first-order accuracy in the mesh size; then,
global second-order convergence rate of the scheme is not affected as it is also confit
by the numerical results. The implementation of discontinuous dielectric properties in
explicit(2, 4) via afourth-order explicit interpolation of the dielectric permittivity on electric
field nodes results, as our numerical experiments (Section 5.2) show, in aloss of two orde
the convergence rate of the explicit(2, 4). The same convergence rate reduction is obte
when the method outlined for the Yee scheme is employed to model an interface in
explicit(2, 4).

An innovative approach to handle piecewise-constant dielectric properties for the
scheme, when the discontinuities occur between grid points, is presented in [15, 16]. Hel
we extend this approach to include such dielectric properties in the explicit(2, 4) sche
as long as the discontinuities occur on electric field grid points. The numerical expe
ments in Section 5 confirm a global fourth-order convergence rate for the scheme prese
below.

We present our approach for the problem of a vertical dielectric slab placed in a dom
bounded on all sides by a metal. We divide the computational domain into three subdomz
two contain air, and the third one contains the lossless dielectric. Inside each subdon
the difference equations (10) are applied to update the solution. The Dirichlet condit
onthe electricfield is used to complete the scheme near the metal boundaries (see Secti
The dielectric interface is also treated as a boundary point for the scheme (10) in the adjs
subdomains. Suppose those dielectric interfaces are located htandi = I, ande = ¢,
forl; <i < I, whilee = ¢; fori > I, andi < I1. We need to derive difference equations
to update the electric field on these boundaries (the dielectric interfaces). We assign
interface node to belong to one of the two abutting subdomains, and require that we
not difference across the jump in the material properties. In this particular case, we t
i = I3, I,to be the boundary nodes of the subdomain that is filled with the dielecttie,.

To that effect, we first approximateY (which is continuous across the interface) at 1,
andi = I, by using the following fifth-order extrapolation with data from the subdomai
that does not contain the interface node:

Yn+1/2_315 n+1/2 105, ni12 189 | ni12
i T 1og Y120 T gy M Vh-32j g M Yiiosg2

45 | nt1)2 35 | n+1/2
~ 3272+ gt vz

(17)
w2 _ 815, nive 105 nip 189

—HY

+1/2
HYL " = 128 Yieri2i = 35 HYierg2) T g7 H Vg2

45 n+1/2 35 n+1/2
3 HY\, 72 + @H Yi,t8/2.j-

OnceHY is approximated on the interface (i.e., on the boundary node), we approxim
its X-derivative at that location using data from the subdomain that contains the interfac
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a boundary (i.e., we do not difference across interfaces) as follows:

9 ,on+rz 1126 ny1p 315 ni1z 35 neis2
AXax i = ~grs i g MYz~ g iz
189 | ni1/2 45  nt1/2 35 | nii2
+ ﬁ)H l+5/2.) — 1_12H 72 T %HYmg/z,j
(18)
0 1/2 1126 1/2 315 1/2 35 1/2
A YT = g MY~ T HYie + 3gHYiae,
— @H ynt1/2 + ﬁ HY"ML2 E Hyn+v2 .

160 27¥21 T 1120 U2l 576 920

Once H Y{L*jl/ 2 and2 H Y{Z”jl/ % are calculated, we update the electric field on the interface

by evaluatingE Z]'" andE Z]'" in the following way, e.g., at = I:

At +1/2 +1/2 +1/2 +1/2
EZT=EZL) ~ aany ™ X a2 = 2THX 2 + 2TH XIS 2 — HXGS o)
At 9 n+1/2
= HY™ 19
+ o ax (19)

Similarly, ati = I, to updateE szfjl'

For a given dielectric contrast we found that differencing inside the subdomain (wh
extrapolating to the interface the field variable to be differenced using data from outside
subdomain) with the smaller dielectric constant results in a slight improvement of the er
Also, we observed that this improvement is lost for large contrast, and therefore conclu
that it does not, in general, matter which subdomain we choose inside which do differer
This is because higher contrasts imply a larger loss of smoothness across the diele
interface and a consequent increase of the local error.

If the dielectric interface is located at= |1 + 1/2, where a tangential magnetic field is
collocated, the treatment differs slightly from that given above. Now, EZ and HY exchan
roles. We first extrapolate EZ to the interface (using data outside the subdomain that cont
the interface)

315 105 189
EZ\12) = 158520 ~ 35 E4h-1i T g4 B2
45__, 35 __,
— DEZ g+ B2,

and then approximate thederivative of EZ at that location (using data from the subdomair
that contains the interface as a boundary)

a 1126 315 35

Axo BZ\ 1) = ~ 35 ELiwai + 57 EZhni — 1gE Lz
189 45 35
+ TBOEZPlJrg’j - 1712E2ﬂ+4’]‘ + 576EZI|11+57]-'
Finally, we update the magnetic fieldiat= 1; + 1/2 with
At 0
n+1/2 n-1/2
HYisa2g = WYy + 2050 h1/2]-

We do not pursue this case any further in the present paper.
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4.1. Stability

A stability analysis is now given for the semi-discrete version of (13)— 0 for a fixed
h #£ 0). Again, we consider a one-dimensiodl= 1) bounded domain separated in two
halves by a dielectric interface at the electric field grid pbiat 1. We neglect theH X]
grid function, seth = Ax, e = u = 1 for grid pointsi < lj;x ande = ¢, for grid points
i > lint, and consider the system

whereu = {EZy, EZy, ..., EZN_1, EZy, HY]_/z, HY3/2, Cey HYN_3/2, HYN_]_/z} is the
solution vector on the grid, anily is the matrix composed of the difference opera-
tors represented by (8), (9), and (17)—(19). Again, we consider the case in Which
enforces homogeneous Dirichlet boundary conditi&i% = EZy = 0 at the first and
last (boundary) nodes of the grid. As in Section 3.2, if the eigenvalues My are
such thatit{r} = 0, the spectral radius d#14 will be pM = max|3{r}|, and then the
semi-discrete scheme will be stable. Consequently, a necessary (again, not sufficient
bility condition for the fully discrete scheme (including the case # 1) is (16) with
pM = pMs.

Figure 4 shows the spectral radiusMf; as a function of mesh sizg and of the con-
traste = e,/¢1. Again, we determined thak{A} = O(10-%) for all h ande of interest.

29 7

27 &

oo

- -0 =7/3

e=8

21 1

2 1 1 L 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12

h

FIG. 4. The spectral radiugy as a function of mesh size for the symmetric scheme with Dirichlet boundar
conditions and a dielectric interfacgi{A} = O(107%)).
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However, as the figure shows, the maximum allowed CFL number is now smaller th
that obtained in Section 3.2 because the valug"bf, whenh — 0, depends or and
can be greater thap> for somee. We note that for a givem, oM again approaches
a limit from below ash — 0. Therefore, in this case, we can only say that the inter
face treatment is stable and, in general, requires a slight reduction of the maximum
lowed time step (for a giveh). This is not restrictive for the model scheme considere
herein as one would run it with a small CFL number in order to obtain fourth-orde
accurate results. The stability condition for dielectrics has been verified numerically |
d=12.

The decision to approximat% H , when the grid pointi, j) is on a dielectric
interface, with a symmetric formula (symmetric in the sense that an equal number of ¢
points to the left and right of an interface are to be used) was arrived at after some numel
experimentation. We initially considered asymmetric formulas, and found that they are
be avoided, as the asymmetry introduces a long-time instability for some valbe&of
example, Fig. 5 shows the maximum and minimum valug€8{af} as a function of the mesh
sizeh whene = 4 (similar results were obtained for other values of the dielectric contras
Now, i{r} = 0 for someh. A computational test with ah for which t{A} ~ 3 x 103
was unstable after 800 time units. Based on the eigenvalue analysis, the time to instak
for this example was approximately 333 time units; we attribute the observed delay to
presence of eigenvalues with{A} < 0 of approximately the same magnitude at the giver
h ande.

n+1/2
Yii]

54X 10
o O Max(R(A)
B Min(R(L)
2 - -
o
1 o .
o
=< ‘
S ol —wm—po 8 o :
& %
B
-1k [+ ]
-2
-2} 2
3 1 D 1 1 1 1
o 0.02 0.04 0.06 0.08 0.1 0.12
h

FIG. 5. N{A} as a function of mesh size for the non-symmetric scheme with Dirichlet boundary conditiol
and a dielectric interface with= 4.
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5. COMPUTATIONAL RESULTS

This section provides numerical tests of the boundary/interface treatment for
explicit(2, 4). At the same time we compare the results to those obtained with the
scheme, and, when available, to those obtained with the compact-implicit Ty(2, 4) sche
[10]. All three schemes are advanced in time by @eAt?)-accurate staggered leapfrog
method, and a uniform grid spacing is employed. For all computations (except one, wt
models the transverse electric case) we chposel everywhere, and = 1 for grid points
in empty space, while > 1 for grid points inside a dielectric medium. In all our tests, meta
boundaries and dielectric interfaces occur on electric field grid points. When presented
error is measured against the exact solutionEgiin the L, norm over space (except in
example two in Section 5.3, where the error is measured irLthenorm over a plane
curve). We also provide tables of the error in thg norm over a fixed time interval for
the purpose of deducing convergence rates. For the examples posed in an open dol
we restrict the time interval over which we measure the error so that our computed res
are not contaminated by reflections from the far-field boundary treatment. All example:
Sections 5.1-5.3 were coded in MATLAB.

5.1. Closed Homogeneous Domains

We begin with an example of engineering interest. Because of the ease of mesl
geometries that conform to a Cartesian mesh, the Yee scheme is often used to compu
resonant frequencies of structures in microwave circuitry, e.g., cavities. Thisis accomplis
by exciting a spatial point in the cavity (herein we do so with a Kronecker delta-functic
in space and time), and recording the time-domain solution at another location for a cer
amount of time units. The resonant frequencies of the cavity (up to the frequency for wh
there is enough resolution) will then be the locations of the peaks of the magnitude
the Fourier transform of the recorded time-domain solution. In our example, the obtair
spectra were individually scaled for graphical purposes. We applied the Yee schem
compute the first five resonances of alPx [0, 1] cavity with PEC wallg E, = 0 there).
With At = 2h/3, the results converged afte= 1/40. The decision to consider a result as
“converged” was taken by running the Yee schemehfer 1/10, 1/20, 1/40, 1/80, 1/160
and finding the resolution past which a refinement of the grid did not affect the positic
of the first five peaks of the spectrum of the cavity. We foundhthke 1/40 result to have
“converged;” that required running thie= 1/80 case also. The number of time steps fol
h = 1/40 anch = 1/80 were 4096 and 8192, respectively. We then run the explicit(2,4) f
the saméh as the Yee scheme but witkt = h?, and theh = 1/10 computation required
6826 time steps to record the solution in the same time interval as for the Yee scheme
found the locations of the first five resonances of the cavity computedhwitti /10 did not
shift with higher resolution. Figure 6 indicates that using the explicit(2, 4) scheme result:
a 16-fold savings in memory while requiring only2more time steps than the Yee scheme

Using the geometry of the previous example we now consider the case in which PE!
located on tangential magnetic field nodes; dddy /0y = O andx = 0, Landd Hy/9x = 0
aty = 0, 1. The scheme is again (10) but with (8) and (9) altered to implement the bour
ary closure described by (13) and (14). Figure 7 shows the actual logarithmic error:
a function of time measured against an exact solution and indicates a slightly better t
fourth-order convergence rate over the time interval considered.
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We next consider single-mode propagation in a rectangular cross-section waveguide
perfectly conducting walls. We prescribe initial and boundary conditions,

E.(X, Yy, 0) = sin(37X) sin(4ry),

At 3 57 At
Hy (x, Y, 2> =z sin <3nx — n2> sin(4ny),

At 4 SrAtY .
Hy (x, Y, ?) =3 cos(Snx — %) sin(4ny),

E;(0,y,t) = —sin(5rt) sin(4ry),
E,(1,y,t) = sin(@8r — 5xt) sin(4ry),
E.(x,0,t) =0,

E.(x,1,t) =0,

so the exact solution is
E.(X,y,t) = sin(3rx — 5xt) sin(4ry).

The discretization and the computational time interval is given in Table | where the conv
gence rates of the schemes are summarized; as the mesh is refined, the Yee scheme
second order accuracy, while the explicit(2, 4) and Ty(2, 4) schemes yield between fou
and fifth-order accuracy which converges to fourth-order on very fine meshes.

Finally, we test the boundary treatment by solving a three-dimensional problem ove
[0,1/2] x [0, 1/4] x [0, 1/2] domain. An exact solution is

Hy = sin(wt) sin(Ax + By + C2),
Hy = sin(wt) sin(Ax+ By + C2),
H; = sin(wt) sin(Ax + By + C2),

cC-B
Ey = coqwt) coYAx+ By+ C2),

w

TABLE |
The Maximal Errors in L, Norm; Two Dimensions

Scheme h At Max(|lerror|.,) 0 <t < 10 Rate
explicit(2, 4) = = 0.014
explicit(2, 4) i = 1.9316x 10~ 6.2
explicit(2, 4) = 6.48 x 107 4.896
Ty(2, 4) = 0.0242
Ty(2, 4) s 7.9304x 1075 8.15

Yee % 0.1889
Yee 3 0.0476 1.9885

40
1
80
1
20
1
20
V2, 4) L 1 2.329% 10°° 5.089
%
1
40
Yee L 1 0.0119 2.0032
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TABLE Il
The Maximal Errors in L, Norm; Three Dimensions

Scheme h At Max(|lerror|,) 0 <t < 10 Rate
explicit(2, 4) & = 5.375x 104
explicit(2, 4) & & 2.184x 10°° 4.621
explicit(2, 4) % 2 9.071x 107 4.590
Ty(2, 4) % = 3.621x 10
Ty(2, 4) L A 1.144x 1078 4.983
Ty(2, 4) = o 3.5621x 1077 5.005
Yee = = 0.0027
Yee L i 73x 10 1.9028
Yee % ﬁ 1.8252x 10 2.0015
-C
Ey = ” coqwt) coYAx+ By + C2),
B-A
E, = ” cojwt) coYAXx+ By + C2),

where w? = A> + B>+ C2 and A+ B4+C =0 with A=xn, B=—-27, C=nx, and

w = /6. Table 1l shows that the (2, 4) schemes outperform the Yee scheme by be
more accurate, and by exhibiting higher-order convergence rates. We found the schen
unstable foICFL > 74/3/3.

5.2. Closed Inhomogeneous Domains

Let a domain which contains air and a lossless dielectric with a relative permitti
ity of ¢, be as shown in Fig. 8. For the Yee scheme we will use the arithmetic a
erage of the permittivity on electric field nodes on the interface, while for the (2,
schemes we will first use a fourth-order interpolation éoand then our new treatment
given in Section 4. An exact solution for time-varying electromagntic fields in such

-1 -1/2 172 1

FIG. 8. The computational domain.



FOURTH-ORDER FINITE-DIFFERENCE METHOD 303

TABLE 1l
The Maximal Errors in L, Norm with €, = 2

Scheme h At Max(|lerror,) 0<t <10 Rate

explicit(2,4) L L 0.0019
explicit(2, 4) & L 5.7585x 10~ 1.715
explicit 2,4) & & 1.4909x 107 1.94
V2, 4) LA 0.00196
Ty(2, 4) L 5.7721x 10 1.763
TV(2, 4) LA 1.4995x 107 1.948
Yee L1 0.0363
Yee E 0.0089 2.028
Yee E 0.00222 2.003
domain is
2 co & X) cogwt) sin(KyY) IX|<3 0<Y=<1
Z =
exp(ZL2) exp(— 252 |X|) cogwt) sin(K,Y) [X|>1 0<Y<1
— ez — e1sin(Z X) sin(wt) sin(K,Y) IX|<3 0=<vY=1
Hy = { —¥3e-«al exp(%§) exp(—znT‘/éX) sin(wt) sin(K,Y) X>1 0<Y=<1
Ve —al exp(7¥3) exp( 23 X) sin(@t) sin(KyY) X <-1 0<yv<1
— €1+ 36z cog( Z X) sin(wt) cos K, Y) IXI<i o0<v=<1
Hy =
—Ya i3 exp(1¥3) exp(— 23| X|) sin(wt) cogKyY) X[ >3 0<Y <1,

_ 2t [ea+3e — 4 i i —
whereKy = </ P andw = 3\/H.We will compare the schemes hereinfgr= 1

ande; = 2, 4, using the same mesh sizes and time steps as before. Tables Il and
indicate the expected reduction of the convergence rate for the (2, 4) schemes, anc
expected second-order convergence rate for the Yee scheme. Although we obtain
second-order convergence for the (2, 4) schemes, the results are better than those ob

TABLE IV
The Maximal Errors in L, Norm with e, = 4

Scheme h At Max(|lerror|.,) 0 <t < 10 Rate
explicit(2, 4) = = 0.0014
explicit(2, 4) L = 3.765x 1074 1.894
explicit(2, 4) < = 9.7748x 1075 1.945
Ty(2, 4) x = 0.00139
Ty(2, 4) % = 3.756x 1074 1.887
Ty(2, 4) L = 9.7579x 1075 1.944
Yee = % 0.0095
Yee % < 0.00237 2.003
Yee 1 L 5.9442x 104 1.9953
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TABLE V
The Maximal Errors in L, Norm with €, = 2

Scheme h At Max(|lerron|.,) 0 <t < 10 Rate
explicit(2, 4) = = 3.1868x 10
explicit(2, 4) i = 4.9822x 10°¢ 5.999
explicit(2, 4) L = 2.6532x 1077 4.231
Ty(2, 4) i = 1.978 x 10
Ty(2, 4) i = 2.2368x 10°° 6.466
Ty(2, 4) L = 3.7520x 1077 2.575
Yee % i 0.0363
Yee i L 0.0089 2.028
Yee L = 0.00222 2.003

with the Yee scheme. However, we are using a fourth-order scheme, and the loss of
orders of convergence in the presence of heterogeneous dielectrics is undesirable.

We repeat the previous example with a code that implements the new interface treatr
presented in Section 4. Tables V and VI summarize the convergence rates, and confirn
expected recovery of global fourth-order convergence for the (2, 4) schemes.

Next, numerical evidence is presented of long-time stability of our approach by consid
ing a problem in which a dielectric of relative permittividy, occupying the spatial region
[0,1/2] x [0, 1], is inserted in a PEC-bounded [y 4] x [0, 1] domain. An exact solution
in this case is

sin(a; X) sin(wt) sinly) 0<X <1 0<Y<1
2 {cos(aZX)sin(wt)sin(bY) I<X=<2 0 <
—2& coga; X) cogwt) sin(bY) 0< X <3 <Y<1
= {% cogaX) cogwt) sinbY) 1 <X <2 <Y<1
b sin(a; X) cogwt) cogbY) 0<X <1 0<Y=<
= {g sin(@X) coswt) cogbY) 1 <X <2 0=<Y<1

TABLE VI
The Maximal Errors in L, Norm with e, = 4

Scheme h At Max(|lerror|,) 0 <t <10 Rate
explicit(2, 4) = = 6.9209x 10°°
explicit(2, 4) % Floo 3.5383x 10°° 4.289
explicit(2,4) s% ﬁ 2.0045x 1077 4.147
Ty(2, 4) = = 2.6958x 10°°
Ty(2, 4) % Wloo 1.2869x 106 4.3887
Ty(2, 4) 8% ﬁj 3.2753x 1078 5.291
Yee = % 0.0095
Yee % % 0.00237 2.003
Yee L 1 5.9442x 1074 1.9953
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FIG. 9. log,(llerror].,) for the explicit(2, 4) scheme.

wherea? + b? = e;0?, a2 + b? = €10?, sin(%) = cog%), cog>2) = 0, and we choose
€1=1,6, =2,a; = 3w, = 27, b = 7, andw = /5. On the air/dielectric interface we
employed the new treatment. To verify stability for a long time, we run this problem for :
time units, withh = 1/20, 1/40, 1/80, 1/160, 1/320. In Fig. 9 we draw the corresponding
errors as a function of time. Table VIl shows the scheme remains stable and fourth-ol
accurate over a long-time interval.

Although in this paper we consider only the TM polarization, the applicability of ou
approach to the transverse electric (TE) case with a piecewise-coagfesed 1) can be
demonstrated by considering the TM equations with a piecewise-constandl a fixed
€. To that end, we coat a perfect conductor with a magnetic dielectric of thic%nasd

TABLE VI
The Maximal Errors in L, Norm with €, = 2

Scheme h At Max(|lerron|.,) 0 <t < 27 Rate
explicit(2, 4) % = 0.0101
explicit(2, 4) L = 6.1264x 10 4.4815
explicit(2, 4) = T 2.7431x 10°° 4.0428
explicit(2, 4) o 1.9041x 10°¢ 3.848
explicit(2, 4) 2 = 1.2522x 1077 3.926
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TABLE VI
The Maximal Errors in L, Norm with pp = 2

Scheme h At Max(llerror.,) 0 <t < 10 Rate
explicit(2, 4) i = 0.0021
explicit(2, 4) 4—10 ﬁ 1.4010x 104 3.9059
explicit(2, 4) 8—10 ﬁ, 5.2597x 10°® 4.7353

relative permeabilityu, = 2 (u; = 1), using the geometry of the previous example. We
used our interface treatment presented in Section 4, and placed the magnetic interfac
an electric node. Table VIII summarizes the convergence rate and confirms our scher
fourth-order accuracy and stability.

5.3. Open Domains

We consider a monochromatic isotropic point source of wavelength 0.25, that is switcl
on att = 0 and radiates in front of an infinite perfectly conducting surface. The poir
source is modeled by adding a term representing a cutpént= 0.01sin8xt)H (t) at
rs=(X,y) = (%, %1)' where H(t) denotes the Heaviside unit-step function. For such :
source, the radiated field is the solution of

1 1
E)fEZ~|—8§EZ—8t2EZ=atlz(t)(S(x—4,y—4). (21)

The solution consists of rotationally symmetric outgoing waves, and is given by

0 — — 2 2
P B et 1 (G Vi e N )

21 Jo VI —rg? + &2

The computational domain is,[@] x [0, ], and the boundary condition is

d¢.

E;(1/2,y,t) =0. (22)

Because the bounding plane is infinite, the exact solution in the region of interest «
be constructed by using the exact solution for (21) and the method of images, with
image source of negative strength at Iocat@n%). For the Yee scheme we chodse-

. At = 2 while for the explicit(2, 4) scheme we chodse= 5, At = h? Figures 10—
12, respectively, show the error in, norm, and contour comparisons of the exact anc
numerical solutions. Both schemes live up to their convergence rate over domains
exclude the source region.

Our next two examples are presented in order to exemplify the type of problems t
remain to be addressed. First, the source of the previous example is now considered i
presence of anincline@ = /8 with respect to the horizontal) perfectly conducting plane
The perfect conductor is staircased so that the metal boundary falls on electric field
points, and we measure the error in thenorm along the dashed line drawn in Fig. 13.
Figures 14-16 show the obtained errortioe 1/20,h = 1/40, anch = 1/80. In this case,
both the Yee and explicit(2, 4) schemes are second-order convergent as seen in Tabl
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FIG. 10. |lerrof|., for the mirror problem with boundary condition (22).
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FIG. 11. Solution contours obtained with the Yee scheme-}, and the exact solution+) att = 5.
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FIG. 12. Solution contours obtained with the explicit(2, 4) scheme-}, and the exact solution+) att = 5.

This is because the local error for both schemes near the inclined plane is only first-orde
the mesh size because of the artificial corners introduced by the staircasing. Figure 15 st
that the Ty(2, 4) schemes is unstable in this situation, whereas the Yee and explicit(2
schemes are stable. We note here that the com Ty(2, 4) scheme [11] is stable in this
ation.

Our final example involves an infinitesimally thin PEC strip illuminated by a point sourc
as shown in Fig. 17. We implemented the dimensional form of the equations, and the sp:
extend of the signal produced by the source (1.2 m) is comparable to the width of the s
(2 m). The scattered field, obtained by computing the total and incident fields and tt
subtracting them, was computed at locations 1 and 2 as shown in Fig. 17. Although

TABLE IX
The Maximal Errors in L, Norm for the Inclined PEC Mirror

Scheme h At Max(lerrof|,) 1<t <4 Rate
explicit(2, 4) = = 0.0165
explicit(2, 4) 4—10 ﬁ 0.0023 2.8428
explicit(2, 4) 8—10 ﬁ 4.2644x 1074 2.4312
Yee % = 0.0359
Yee 4—10 6—10 0.0034 3.4004
Yee L 1 4.7338x 1074 2.8445
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PEC Plate

SOURCE

FIG. 17. Geometry of PEC strip scattering problem.

analytical solution is difficult to evaluate, we exploit the fact that the horizontal compone
of the scattered magnetic field is identically equal to zero outside the support of the s
[19] on the dashed line passing through location 2 in order to evaluate the performa
of the high-order scheme. Figures 18 and 19 indicate that at location 1 (away from
strip) the high-order scheme produces the result obtained with the Yee scheme but w
four-times coarser grid. At the same resolution, the schemes do not completely agree
detail in Fig. 19). At location 2 we find the fourth-order scheme gives a nonzero horizon
component for the scattered magnetic field (Fig. 20) which we determined to be first-or
convergent to zero; the Yee scheme for the infinitesimally thin strip gives values consis
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FIG. 18. Comparison of scatterd, field at location 1.
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FIG. 19. Detail from Fig. 18.
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FIG. 20. ScatterecH, component at location 2 for the explicit(2, 4) scheme.
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FIG. 21. ScatterecH, component at location 2 for the Yee scheme withhal#ick PEC strip.

with the analytical result. We conjecture that the numerical boundary treatment surrounc
the infinitesimally thin PEC strip (on whidB Z = 0 is imposed with our approach) endows
the sharp edge with an effective roundness. It is known that scattering increases whe
edge is blunted [20]. We then applied the Yee scheme to the same problem but with a -
that is 2h thick (two rows of hodes wherge, = 0); the resemblance of the obtained result
(Fig. 21) to that in Fig. 20 is offered as confirmation of our assertion.

5.4. Relative Computational Cost

We now compare the efficiency of the (2, 4) schemes to that of the Yee scheme
considering an empty [@] x [0, 1] cavity with PEC walls excited by initial conditions.
For the (2, 4) schemes we use a uniform grid spacinglwvithAx = Ay = %. For the Yee
scheme we also use a uniform grid spacing, but With AXx = Ay = Z—}m. We chose these
mesh sizes in order to obtain the same error between the Exaotd the approximatg, in

L, norm. The comparison is shown in Table X. The programs were written in FORTRA

TABLE X
CPU-Time Comparison for a Fixed Error

Scheme h At Max(error|,) 0<t <10 CPU—time

explicit(2,4) = & 1.99x 1072 0.9 sec
V2, 4) EA 1.25x 10°3 5.7 sec
Yee e 1.31x 1073 91 sec
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and were run on a Digital 600 au Alpha workstation. We observe that the CPU time nee
to achieve the same accuracy with the Yee scheme is more than 11 times larger than
required by the Ty(2, 4) scheme, and 91 times larger than that required by the explici
4) scheme. Note the time savings is realized despite the smaller time step required by
(2, 4) schemes.

6. CONCLUSION

We presented stable finite difference operators to implement boundary/interface col
tions in a fourth-order accurate extension of the Yee scheme. Numerical tests confirr
that the convergence rate exhibited by the high-order scheme in the absence of bound
is preserved in their presence; fourth-order convergence is also obtained in the presen
discontinuous electric and magnetic dielectric properties.

Theresults obtained in the last two examples of Section 5.3 indicate that both the bounc
staircasing and the presence of geometric singularities (e.g., knife-edge) adversely a
the convergence rate. These issues are the topic of our ongoing work.
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